NumPy Matrix Operations and Element-Wise Product. In the following code, I will Elementwise product and Matrix operations of Python NumPy Module.
import numpy as np
from numpy import pi
Code:
A = np.array( [[1,1],
[0,1]] )
B = np.array( [[2,0],
[3,4]] )
A*B
Output:
array([[2, 0],
[0, 4]])
Matrix product:
A.dot(B)
Output:
array([[5, 4],
[3, 4]])
Another matrix product:
np.dot(A, B)
Output:
array([[5, 4],
[3, 4]])
Code:
a = np.ones((2,3), dtype=int)
b = np.random.random((2,3))
a *= 3
a
Output:
array([[3, 3, 3],
[3, 3, 3]])
Code:
b
Output:
array([[ 6.96176389, 6.15431585, 6.64806932],
[ 6.58159376, 6.53335857, 6.0749873 ]])
Code:
b += a
b
Output:
array([[ 6.96176389, 6.15431585, 6.64806932],
[ 6.58159376, 6.53335857, 6.0749873 ]])
Code:
a = np.ones(3, dtype=np.int32)
b = np.linspace(0,pi,3)
b.dtype.name
Output:
'float64'
Code:
c = a + b
c
Output:
array([ 1. , 2.57079633, 4.14159265])
Code:
c.dtype.name
Output:
'float64'
Code:
d = np.exp(c*1j)
d
Output:
array([ 0.54030231+0.84147098j, -0.84147098+0.54030231j,
-0.54030231-0.84147098j])
Code:
d.dtype.name
Output:
'complex128'